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Abstract—Recent researches have noted many changes of short-term dynamic modalities in mild cognitive
impairment (MCI) patients’ brain functional networks. In this study, the dynamic functional brain networks of
82 MCI patients and 85 individuals in the normal control (NC) group were constructed using the sliding window
method and Pearson correlation. The window size was determined using single-scale time-dependent (SSTD)
method. Subsequently, k-means was applied to cluster all window samples, identifying three dynamic functional
connectivity (DFC) states. Collective sparse symmetric non-negative matrix factorization (cssNMF) was then used
to perform community detection on these states and quantify differences in brain regions. Finally, metrics such as
within-community connectivity strength, community strength, and node diversity were calculated for further anal-
ysis. The results indicated high similarity between the two groups in state 2, with no significant differences in
optimal community quantity and functional segregation (p < 0.05). However, for state 1 and state 3, the optimal
community quantity was smaller in MCI patients compared to the NC group. In state 1, MCI patients had lower
within-community connectivity strength and overall strength than the NC group, whereas state 3 showed results
opposite to state 1. Brain regions with statistical difference included MFG.L, ORBinf.R, STG.R, IFGtriang.L, CUN.
L, CUN.R, LING.R, SOG.L, and PCUN.R. This study on DFC states explores changes in the brain functional net-
works of patients with MCI from the perspective of alterations in the community structures of DFC states. The
findings could provide new insights into the pathological changes in the brains of MCI patients.� 2024 IBRO. Pub-

lished by Elsevier Inc. All rights reserved.
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INTRODUCTION

Mild Cognitive Impairment (MCI) manifests as cognitive

impairments that do not meet the diagnostic criteria for

Alzheimer’s disease (AD), nor significantly affect

patients’ intellectual functioning or daily activities. It is

widely considered as a precursor stage of AD (Liu et al.,
https://doi.org/10.1016/j.neuroscience.2024.02.026
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2022). Timely and effective intervention is crucial for

improving treatment outcomes and delaying disease pro-

gression in MCI patients. Therefore, it is critical to analyze

and accurately identify brain characteristics of MCI

patients.

Resting-state functional magnetic resonance imaging

(rs-fMRI) boasts some advantages such as non-

invasiveness, high spatial resolution, stable and reliable

results, and a straightforward experimental procedure

(Fathi et al., 2022). It has improved our understanding

of brain functional organization and human brain changes

following disease and injury. Various studies have cap-

tured changes in the brains of MCI and AD patients in

terms of regions, functions, and overall brain connectivity

(van den Heuvel & Hulshoff Pol, 2010). For example,

Wang et al. (Wang et al., 2012) discovered reduced func-

tional connectivity in regions such as the left thalamus and
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mailto:zouling@cczu.edu.cn
https://doi.org/10.1016/j.neuroscience.2024.02.026
https://doi.org/10.1016/j.neuroscience.2024.02.026
https://doi.org/10.1016/j.neuroscience.2024.02.026


2 H. Wang et al. / Neuroscience 544 (2024) 1–11
a set of regions in MCI patients such as bilateral cuneus,

middle occipital gyrus (MOG), superior frontal gyrus

(SFG). They observed reduced connectivity in the right

thalamus and some regions, such as bilateral cuneus,

MOG, fusiform gyrus (FG). They also observed that func-

tional connectivity between the left and right thalamus

increased. In recent years, many researchers studying

common neurological disorders and diseases have direc-

ted their attention towards dynamic functional connectivity

(DFC) (Du et al., 2021; Zhang et al., 2021; Gao et al.,

2022; Wei et al., 2022; Xu et al., 2023). Jiao et al. (Jiao

et al., 2021) identified differences in DFC between early

MCI (eMCI), late MCI (lMCI), and normal control (NC)

by comparing repetitive patterns during rest or task

states. Their graph theory metrics revealed states of both

integration and segregation of functional connectivity.

Changes in short-term dynamic modalities have also

been found in diseases like autism spectrum disorder

(ASD), attention-deficit/hyperactivity disorder (ADHD),

bipolar disorder (BD) II depression (Chen et al., 2022;

Gao et al., 2022; Zhu et al., 2023). In DFC studies, it is

common to generate a set of FC matrices for each subject

by calculating sliding window correlations (Hindriks et al.,

2016; Ma et al., 2021; Gao et al., 2022; Spencer &

Goodfellow, 2022). However, choosing an appropriate

window size is a critical issue. Zhuang et al. (Zhuang

et al., 2020) proposed the use of SSTD to determine

the window size for DFC, a data-driven approach.

In the study of brain functional networks, community

structure is one of the most important topological

features. Brain functional networks, like real-world

complex networks, exhibit overlapping community

structures (Najafi et al., 2016), meaning that a node can

serve multiple functions and participate in multiple com-

munities in the brain’s actual functioning. Due to compen-

satory mechanisms triggered by damage in certain brain

regions of MCI patients, alterations in their brain func-

tional networks have occurred (Prieto del Val et al.,

2018). Some research held that features related to com-

munity structure are valuable for detecting neurological

disorders and diseases. Changes in overlapping commu-

nity structures have been identified in diseases such as

Alzheimer’s disease (AD), Major Depressive Disorder

(MDD), and juvenile myoclonic epilepsy (JME) (Chen

et al., 2021; Han et al., 2022; Vataman et al., 2023). How-

ever, previous studies mainly used static functional con-

nectivity for community detection, and few investigations

explore changes in community structure from the per-

spective of DFC states.

This study combines the sliding window and k-means

to identify repetitive modalities in MCI and NC subjects,

and employs collective sparse symmetric non-negative

matrix factorization (cssNMF) (Li et al., 2018) to detect

overlapping community structures. The study also

explores changes in the community structure of different

DFC states in MCI patients from the perspective of

alterations in DFC state community structures and func-

tional network segregation. Additionally, this study aims

to identify different nodes that repeatedly appear in the

research.
EXPERIMENTAL PROCEDURES

Data acquisition and preprocessing

In this study, the fMRI data of the NC group and the MCI

subjects were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (https://adni.

loni.usc.edu/). It is a multicenter longitudinal study

aiming primarily to detect biomarkers for clinical use and

to test whether the progression of MCI and the early

stages of AD can be measured by combining

continuous MRI, PET, other biomarkers, clinical, and

neuropsychological assessments.

The study analyzed fMRI data from 167 participants,

including 82 individuals with MCI (44 females, 38 males,

average age 73.55) and 85 individuals in the NC group

(43 females, 42 males, average age 72.76). fMRI data

were acquired using various models of 3 T Siemens

medical systems. The scanning parameters used during

the acquisition process were as follows: repeat time

(TR) = 3000.0 ms, echo time (TE) = 30.0 ms, flip

angle = 90.0�, matrix X = 448.0 pixels, matrix

Y = 448.0 pixels, pixel spacing X = 3.4 mm, pixel

spacing Y = 3.4 mm, slice thickness = 3.4 mm, pulse

sequence = EP, slices = 197.0, and slice number = 48.

Resting-state fMRI data preprocessing was

conducted using the DPARSF (Chao-Gan & Yu-Feng,

2010) (http://www.rfmri.org/), SPM12 (http://www.fil.ion.

ucl.ac.uk/spm/), and MATLAB. During preprocessing, all

subjects underwent slice timing correction, head motion

correction, co-registration, normalization, and filtering.

To mitigate the effects of gradient magnetic field instabil-

ity, the first 10 time points of the data were discarded.

Data from subjects with excessive head motion

(translation > 3.0 mm, rotation > 3.0�) were excluded.

Only data meeting the criteria were used.

During co-registration, the images were normalized to

standard MNI space using an EPI template, resampled to

3 � 3 � 3 mm3 voxels, and smoothed using a 6 mm full-

width at half-maximum Gaussian kernel. Subsequently,

linear detrending and bandpass filtering (0.01–0.08 Hz)

were applied to the images to suppress low-frequency

drift and physiological noise. The entire brain was

divided into 90 regions of interest (ROIs) using the

Automated Anatomical Labeling (AAL) template, and the

average time series of all voxels were extracted for

each ROI.
Calculation of DFC and identification of repetitive
states

When calculating DFC, we computed the single-scale

time-dependent (SSTD) window size for the sliding

window approach (Zhuang et al., 2020). The SSTD win-

dow size is time-dependent and data-driven, based on

the frequency content at each time point of the time ser-

ies, and is calculated without any prior information. The

dynamic FC matrix computed using the SSTD window

size captures more temporal dynamic information related

to behavior and cognitive functions. Subsequently, the

sliding window method and Pearson correlation coeffi-

https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
http://www.rfmri.org/
http://www.fil.ion.ucl.ac.uk/spm/
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cient method were used to calculate the DFC, with a win-

dow size equal to the calculated SSTD window size. After

each calculation, the window was slid back one time point.

To identify repetitive patterns in DFC, K-means

clustering analysis was applied to all samples. Before

performing clustering analysis, a Fisher-Z transformation

was applied to the correlation matrices to enhance their

normality. The data was also dimensionally reduced

using two-dimensional principal component analysis

(2dpca), and the remaining information after

dimensionality reduction was evaluated by calculating

cumulative scores. We set the cumulative score

threshold to 0.90, aiming to retain at least 90% of the

original data variance.

To mitigate the impact of data redundancy on the

computation time and results of clustering, a second-

level subsampling of the participant’s sliding windows

was performed (Allen et al., 2014). The subsampling crite-

ria involved selecting 8–12 windows with local maximum

variance from the 187 windows of each participant, result-

ing in an average of 10 windows per participant as initial

clustering samples.

Since the samples were high-dimensional data, the L1

distance function (Manhattan distance) was chosen over

the L2 distance function (Euclidean distance) as a more

effective similarity measure (Allen et al., 2014). The ran-

domization of initial centroids for K-means was repeated

500 times, with a maximum of 1000 iterations, to avoid

local minima. The value of K was iterated over from 2 to

10 with a step size of 1. The squared distance error

between the centroids of each cluster and the sampling
Fig. 1. Overview of DFC analysis in this study. It includes the following s

construction of brain functional networks using a sliding window approach; (

detection for three states, followed by statistical and metric analysis.
points of the cluster, known as the sum of squared errors

(SSE) or distortion, was computed for each cluster, and

the elbow criterion was used to determine the optimal

number of clusters.

Once the optimal value of K was determined, K-

means clustering was performed using K as the number

of clusters and the results of the second-level

subsampling as the cluster centers, resulting in K

distinct repetitive modes for the two groups of

participants.

The detailed steps of this study are shown in Fig. 1.
Detection of overlapping community structures

In the actual operation of the brain, a specific brain

region can fulfill multiple functions, demonstrating its

ability to engage in various communities and contribute

to the formation of an overlapping community structure.

Therefore, cssNMF (Li et al., 2018) was applied to con-

duct overlapping community detection across all modali-

ties of two groups of participants. Before the analysis, we

computed the average of all DFC values attributed to a

particular modality for each participant, retaining only

the node-to-node connections with functional connectiv-

ity strengths ranking within the top 10%. cssNMF inher-

ently captures inter-subject variability in community

strength without necessitating additional post-

processing steps. It enables the direct interpretation-

based identification of highly replicable group-level com-

munity structures. The objective function of cssNMF is

as follows:
teps: (a) Extraction of time series based on the AAL template and

b) Clustering using the k-means method; (c) Overlapping community



Fig. 2. Variation of sum of squared errors (SSE) across different

numbers of clusters (K).
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Where H(H ¼ ðh1; :::; hkÞ 2 Rn�k) represents the

detected results of overlapping community detection, k

is the predetermined number of communities used for

community detection with the cssNMF model,hj

represents the j-th community. Where Gi
(Gi 2 Rn�n

ði ¼ 1; 2; :::;MÞ)is the symmetric non-negative correlation

matrix of participants, M represents the number of

participants. For each correlation matrix, specific

information is retained individually in Si (Si ¼
ðsi1; :::; sikÞ 2 Rk),sij represents the strength of the j-th

community of the i-th correlation matrix. Where b(b > 0)

is the regularization parameter used to control the level of

sparsity in the obtained communities, ensuring that only

the most relevant nodes are retained within the

communities.

The parameters k and b are determined through a grid

search with a dual cross-validation process. The testing

error is defined as follows:

Test error ¼
PNtest

i¼1 kGi
test � HtrainS

i
testH

T
traink2F

PNtest

i¼1 kGi
testG

�
testk2F

ð2Þ

Due to random initialization and non-convex constraints,

cssNMF needs to be run multiple times. Thus, for each

computation in the experiment, the cssNMF algorithm

was executed 20 times, and the minimum value of the

objective function was selected for subsequent analysis.

Upon obtaining the overlapping community results for

all modalities of the two participant groups, the top 10

brain regions with significant differences in weight

values within each community for both groups were

separately recorded. Additionally, the distinct nodes that

contributed to multiple functions in the community

detection of both groups were identified.

Functional segregation and node functional diversity

In this study, functional segregation is characterized using

the within-community connection strength and the overall

community strength (Han et al., 2022). For each partici-

pant, the weights of within-community connections are

utilized to represent the within-community connection

strength:

Xk

p¼1

ksiphph
T
pk1 ð3Þ

For each participant, the overall community strength is

represented as the sum of all community strengths (sip):

Xk

p¼1

sip ð4Þ

After obtaining the overlapping community structures and

participant-specific results, the method for characterizing

functional diversity of the j-th node for a specific

participant i is as follows (Han et al., 2022):

�
Xk

p¼1

Pi
jp lnP

i
jp ð5Þ
RESULTS

K-means clustering analysis

In determining the optimal number of clusters, we

calculated the SSE and used the elbow criterion to

identify the optimal number of clusters as 3, as shown in

Fig. 2.

As the number of clusters K increases, the SSE

decreases. However, when the number of clusters

reaches a certain point, the centers of each group no

longer significantly approach their respective internal

data points. At this point, increasing the number of

clusters no longer significantly reduces clustering error.

The improvement in performance becomes markedly

smaller when K reaches 3.

The following are the repetitive patterns identified with

K set to 3. In the NC group, the three states respectively

account for 46.04%, 42.90%, and 11.05% of the sliding

windows, while in the MCI group, they account for

34.76%, 47.85%, and 17.39%, respectively. Notably,

state 3 has a relatively low proportion in both groups

(see Fig. 3).
Overlapping community detection and analysis
Parameter selection. The results of dual cross-

validation for selecting the optimal number of

communities k, and the sparsity coefficient b, are

depicted in the following figure. The influence of b on

testing error remains relatively consistent when it varies

between 0 and 1. For all groups, the testing error

decreases as k increases, with minimal changes in

testing error beyond k = 12. For each state, in state 1,

the testing error for both the NC and MCI groups

decreases slightly after k = 10 and k = 8 respectively.

In state 2, the testing error for both groups

demonstrates a smooth variation. In state 3, the testing

error for the NC and MCI groups decreases slightly after



Fig. 3. Functional connectivity matrices composed of the average values from the NC group and the MCI group after clustering into three states.

Fig. 4. Parameter selection for cssNMF through dual cross-validation.
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k = 6 and k = 8 respectively, with a sharp reduction in

changes in error magnitude after k = 5 and k = 4.

Taking all factors into consideration, subsequent

research on the three states was conducted in two

rounds of experiments, with parameter settings of

b = 0.1, k = 8 for one round and b = 0.1, k = 12 for

the other round.

The upper and lower rows respectively display the

testing error results for the three states of the NC group

and the MCI group (see Fig. 4).

Overlapping community differences. Figs. 5 and 6

represent the results of overlapping community

detection for the NC and MCI group data for two

modalities, respectively, using input parameters of

b = 0.1, k = 8, and b = 0.1, k = 12. In both sets of

experiments, the differences in community detection

between the two groups in state 1 are primarily

concentrated within fewer communities. The results for

community detection in state 2 are quite similar between

the two groups, while the differences in the results of

community detection are more pronounced in state 3.

When k = 8, it was found that in state 1, the

differences between the community detections of the

two groups are primarily concentrated in communities 1

and 2. While in state 2, the differences are minimal, only

showing slight variations in brain regions with lower

community weights. In state 3, the differences are

mainly focused on the 6th, 7th, and 8th communities.

However, compared to state 1 and state 2, the

differences between various communities are more

significant. Apart from the mentioned communities, there

are minimal changes in other communities for the MCI

patients (see Fig. 5).

When k = 12, it was found that in state 1, the

differences between the community detections of the
Fig. 5. Overlapping community detection
two groups are primarily concentrated in the 8th and

11th communities. In state 2, the differences are mostly

present in nodes with lower community weights, with a

significant difference in the twelfth community. In state

3, the differences are significant in the 2nd, 4th, 5th,

7th, and 12th communities. Compared to state 1 and

state 2, the differences between various communities

are more pronounced. Apart from the mentioned

communities, there are minimal changes in other

communities for the MCI patients (see Fig. 6).

From a comparative perspective on various

communities, we conducted statistical analyses on

nodes with significant differences in both k = 8 and

k = 12 conditions, retrieving their corresponding

Resting State Networks (RSNs) (He et al., 2009). For

state 1 and state 2, we identified the top 10 brain regions

with the largest differences in values. Given the higher

number of brain regions with differences in state 3, we

performed statistical analyses on brain regions with

weight differences exceeding 0.5 (see Fig. 7):

For State 1, nodes with substantial differences include

PreCG.R, SPG.R, STG.R (Sensorimotor), ACG.R

(Default mode), MFG.L, IPL.R (Attention), HIP.L, CAU.

L, PUT.R, TPOmid.R (Subcortical).

For State 2, nodes with substantial differences include

SFGdor.R, SFGmed.R (Sensorimotor), MFG.L,

IFGoperc.L, IFGtriang.L, ORBinf.R, ITG.L (Attention),

LING.L, LING.R (Visual), TPOmid.L (Subcortical).

For State 3, nodes with substantial differences include

INS.R, PoCG.L, PoCG.R, SPG.L, PCL.L, PCL.R, STG.R

(Sensorimotor), SFGmed.L, PCG.L, PCG.R, PCUN.R,

MTG.R (Default mode), IFGoperc.R, IFGtriang.R,

ORBinf.R (Attention), CUN.L, CUN.R, SOG.L, SOG.R,

MOG.L, MOG.R (Visual), OLF.R (Subcortical).

Notably recurring nodes include MFG.L and ORBinf.R

(Attention), as well as STG.R (Sensorimotor).
results with k = 8 and b = 0.1.



Fig. 6. Overlapping community detection results with k = 12 and b = 0.1.

Fig. 7. Nodes with significant differences in various communities for k = 8 and k = 12 conditions.
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From the perspective of overlapping nodes in various

communities, we conducted statistical analyses on nodes

that exhibited differences in both the k = 8 and k = 12

experiments, and retrieved their corresponding Resting

State Networks (RSNs) (see Fig. 8):

For State 1, differing nodes include SMA.R

(Sensorimotor), AMYG.L, TPOmid.L (Subcortical), FFG.

R (Visual), PCUN.L, PCUN.R (Default mode). All these

nodes provide multiple functions in the NC group but not

in the MCI group.

For State 2, differing nodes include MFG.L (Attention),

SFGmed.L, PCG.L, ITG.R (Default mode). SFGmed.L

and PCG.L have conflicting results between the two

detections, while the rest provide multiple functions in

the NC group but not in the MCI group.
For State 3, differing nodes include ORBsup.L,

ORBmid.L, ORBmid.R, ANG.L (Attention), ORBsupmed.

R, PCG.R (Default mode), INS.L (Sensorimotor), PHG.

L, PAL.L, THA.R (Subcortical), SOG.L (Visual). PCG.R

has conflicting results between the two detections, while

ORBsupmed.R, PHG.L, PAL.L provide multiple

functions in the NC group but not in the MCI group, and

others exhibit the opposite pattern.

Notably, there are no nodes that consistently appear

in the differences among nodes providing multiple

functions across the three states.

Functional segregation. Functional segregation of the

community structure is evaluated based on the within-

community connectivity strength and the overall



Fig. 8. Overlapping nodes with differences between MCI and NC groups. Red brain regions represent nodes that provide multiple functions in in

various communities of the NC group but not in the MCI group in both experiments. Green brain regions represent nodes that provide multiple

functions in various communities of the MCI group but not in the NC group, while blue represents regions with opposite results in the two

experiments.

Fig. 9. Comparison of Functional Segmentation Indicators between MCI and NC Groups. The upper and lower rows depict the comparison of

within-community connectivity strength and overall community strength for the three states in the NC group and MCI group, respectively, with K=8,

12. The average values and standard deviations of both strengths for all participants are plotted, with asterisks denoting significant differences

between the two groups (p < 0.05, t-tests, the absolute value of t is between 2.59 and 7.88).
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community strength for each state in the two groups (see

Fig. 9).
In state 1, both the within-community connectivity

strength and overall community strength are stronger in



Fig. 10. Comparison of node functional diversity between MCI and NC Groups. The figure displays the top 10 nodes with the biggest mean

differences in functional diversity that exhibited significance differences in both k = 8 and k = 12 conditions.
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the NC group than the MCI group. In state 2, the

differences in within-community connectivity strength

and overall community strength between the NC and

MCI groups are relatively small. In state 3, the within-

community connectivity strength and overall community

strength are generally lower in the NC group compared

to the MCI group.

Node functional diversity. We separately calculated

the functional diversity of nodes in the NC and MCI

groups, followed by conducting significance difference

tests (p < 0.05, t-tests). For each state, we selected

the top 10 nodes with the biggest differences in

functional diversity. The absolute values of the t-values

obtained in state 1 for these brain regions range from

23.64 to 46.26, from 16.03 to 26.52 in state 2, and from

10.09 to 12.86 in state 3 (see Fig. 10).

Among them, IFGtriang.L (belonging to Attention),

CUN.L, CUN.R, LING.R, SOG.L (belonging to Visual),

and PCUN.R (belonging to Default mode) appeared

repeatedly. Additionally, when comparing the MCI group

to the NC group, functional diversity decreased in CUN.

L, CUN.R, and SOG.L, but increased in IFGtriang.L and

PCUN.R; LING.R exhibited decreased functional

diversity in state 1 but increased in state 3.

DISCUSSION

This study investigated the differences in community

detection of DFC patterns in MCI patients. Using k-

means clustering on the functional connectivity matrices

obtained from 2DPCA-reduced data, we explored

various DFC patterns among participants. The CSSNMF

method was applied for community detection of these

patterns, enabling us to compare the community-specific

within-module connectivity and overall community

strength between MCI patients and the NC group.
Additionally, we computed node diversity metrics for

both groups to identify nodes with significant differences.

Our findings reveal that within the clustering results,

state 1 and state 2 are highly prevalent in both groups

of participants, while state 3 is less common.

Specifically, state 2, which accounts for 47.85% in the

MCI group and 42.90% in the control group, exhibits a

high degree of similarity. There are no significant

differences in terms of optimal community numbers and

functional segregation within this state. Notably, the

disparities in the outcomes of community detection are

mostly observed in nodes with lower community

weights. In state 1, it constitutes 34.76% in the MCI

group and 46.04% in the control group. There was a

difference in the optimal number of communities

between the two groups of participants. The differences

in nodes are relatively limited, and in terms of functional

segregation metrics, MCI patients exhibit lower

community internal connection strength and overall

community strength compared to the control group.

Interestingly, in the less prevalent state 3, there are

variations in optimal community numbers and

substantial differences in community structures. In

contrast to state 1, MCI patients in state 3 demonstrate

higher community internal connection strength and

overall community strength than the control group.

In both state 1 and state 3, the optimal community

sizes of MCI patients were smaller than those of the NC

group. This finding is consistent with a

magnetoencephalography study on Alzheimer’s Disease

(AD). This research reveals a significant reduction in the

number of brain modules in the AD group across

different frequency bands (de Haan et al., 2012).

The decrease in the number of optimal communities

may indicate that in the same states, the brain

functional networks of MCI undergo certain changes,

possibly due to a functional weakening in certain brain
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regions, leading to compensatory shifts in other brain

regions to fulfill the related functions (Han et al., 2022).

Comparing the experiments with community quantities

set at 8 and 12, state 2 exhibited minor differences in

community detection results between the two groups,

mainly in nodes with lower community weights. There

were no significant differences in within-module

connectivity and overall community strength, which

indicated that the resting-state brain activities in state 2

showed no substantial differences between MCI patients

and the NC group. However, in states 1 and 3,

significant differences were observed in community

detection results, within-module connectivity, and overall

community strength, aligning with our expectations.

Interestingly, the direction of differences in within-module

connectivity and overall community strength was

reversed between these two states. In state 1,

decreased within-module connectivity and overall

community strength in MCI patients suggested a more

dispersed and segregated brain functional network,

indicating a weakened capacity of joint function across

brain regions. In state 3, the opposite trend indicated

that, compared to the NC group, MCI patients exhibited

a more integrated and unified brain functional network in

certain conditions. A similar phenomenon was also found

in an EEG study of MCI, where cognitive tasks induced

significantly higher increments of global network

integration in MCI patients. MCI patients require more

communication and recruitment across brain areas to

maintain or improve task performance (Požar et al., 2023).

The opposite result of state 1 and state 3 may be due

to the need for stronger global network integration for MCI

patients to achieve certain functions in state 3, but not in

state 1. This may be attributed to the different adaptive

strategies adopted by the MCI brain in response to

different states, which may be formed by different

mechanisms and influencing factors (Bansal et al., 2019).

We further compared the differences among various

brain regions within each community in the three states

and identified nodes with significant differences that

were consistently present in both experiments. We

found differences in certain brain regions in state 1,

including the Frontal Lobe, Parietal Lobe, Medial

Temporal Lobe, Basal Ganglia, and Temporal Lobe. In

state 2, differences were observed in the Frontal Lobe,

Parietal Lobe, Occipital Lobe, and Temporal Pole. In

state 3, differences were observed in the Frontal Lobe,

Parietal Lobe, and Occipital Lobe.

The changes in these regions have been reported in

previous research (Garcia-Alvarez et al. 2019; Bangen

et al., 2020; Dadar et al., 2022; Yeung et al., 2022).

Among the community difference nodes in the three

states, only MFG.L, ORBinf.R, and STG.R repeatedly

appeared. Perhaps in different states, MCI patients have

different brain regions required for communication and

recruitment to achieve corresponding functions (Bansal

et al., 2019; Požar et al., 2023).

Furthermore, an analysis of node diversity differences

revealed nodes with substantial mean differences in
functional diversity between k = 8 and k = 12. Among

them, IFGtriang.L (Attention), CUN.L, CUN.R, LING.R,

SOG.L (Visual), and PCUN.R (Default mode) were

recurrent.

In the study on enhancing the feature representation

of multi-modal MRI data for MCI classification (Liu et al.,

2020), CUN.L, CUN.R, LING.R, SOG.L, and PCUN.R

are important regions that repeatedly emerge in feature

extraction across different modal data. These regions

have also been reported in studies using the functional

brain network estimation method for classification (Lei

et al., 2020). Additionally, IFGtriang.L has been reported

in research aiming to combine functional and structural

information to obtain the most valuable features for diag-

nosing SCD and MCI (Lei et al., 2021).

A notable phenomenon was the fluctuation in LING.

R’s functional diversity between state 1 (decrease) and

state 3 (increase). Maybe in state 3, MCI patients

increased the connectivity of LING.R with other regions

to achieve the corresponding function.

Several limitations of this study should be noted. First,

the fMRI data collected were obtained using different

scanner models, and the sample size was relatively

small. The scanning duration for each participant was

relatively short (9 minutes and 51 seconds). Secondly,

determining appropriate functional connectivity states is

a crucial issue. Lastly, the choice of community quantity

was based on a conservative approach.

In summary, we found that there were differences in

community structure between MCI and NC groups

under different DFC states, including the optimal

number of communities, functional separation, and

Node Functional Diversity. Meanwhile, we identified

some nodes with significant differences. We believe that

research and findings conducted from this perspective

can contribute to understanding of the neural network

mechanisms of MCI.
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